Brackett-γ Line Emission Maps of Four Galaxies

T.H. JARRETT, G. HELOU and C. A. BEICHMAN IPAC/Caltech

Abstract. Observations of the Bi- γ hydrogen recombination line have been made in a sample of four galaxies. The data were acquired with the new Palomai }'rili, c-l'ecu: Infrared Camera (PFIRCAM) mounted at the prime focus (f/3.3) of the Hale 5-m telescope. The galaxies were imaged with narrow bandfilters centered 011 the Br- γ (2.166 μ m) line and nearby K-band continuum. This project was undertaken with two goals in mind. First, to demonstrate the feasibility of extragalactic narrow-band imaging with near-infrared arrays, and second, to measure the Br- γ to H\(\text{o}\) flux ratio corresponding to regions undergoing massive star formation. The galaxies are all at 10 w redshift, but of a variety of morphologies: late-type galaxies, NGC 3683 (Sbc, 1656 km/s) and NGC 4713 (Sbd, 653 kill/s), early-type galaxy, NGC 5866 (SO-I . 770 km/s), and irregular-type galaxy, NGC 2537 (IRR, 47 km/s), ln three of the galaxies, NGC 2537, NGC 3683 and NGC 4713, we detect Br- γ emission at the 3σ level, and in NGC 5866 we obtain an upper limit. The spatial resolution of the raw $2.2\mu m$ data was about 1", with the final maps smoothed 1(1 a resolution of 1 - 1.5". Our Br- γ detections resolve individual HII region complexes in the galaxies. By comparing the Br- γ emission with H α emission, we may derive an effective extHI[(10H measure, and infer a Lyman continuum flux from massive stars. This Lyman luminosity can then be converted into a total mass estimate for young stars, assuming an initial mass function and an upper mass cut-off. To date we have acquired $H\alpha$ images of NGC 3683, NGC 4713, and NGC 5866. The preliminary results of NGC 4713 are presented in this paper.

Key Wol'(is: Galaxies: Massive Star Formation II 11 Regions

1. Observations and 1 lat a

Narrow-band (1%) filters were used to measure the Br- γ line emission relative to the $2\mu m$ continuum. The Br- γ (V= () km/s) filter is centered at 2.163 μm with a half-maximum bandwidth of 0.029 μm and a maximum transmission of ~70%. The red-shifted Br- γ line center ranges from 35% filter transmission (NGC 3683) to 65% transmission for the other three galaxies. The filter used for the continuum subtraction is centered at 2.208 μm with a FWHM of 0.024 μm and 65x, transmission.

The $2\mu m$ continuum images were then flux calibrated to the Br- γ images using both standard stars and field stars located within the images containing the galaxies. The flux-calibrated continuum images were subtracted from the Br- γ images resulting in a measure of the flux solely due to Br- γ line emission. The H α data were acquired using the Palomar 60" telescope and a Tek1024 CCD camera. We used a red-shifted H α filter (0.6 60 μm , FWHM=0.elf)/{III,' 'YW60(X'):III(i')} a broad-bandRfilter to measure the red continuum.

Fig. 1. NGC 4713 as seen in Br-γ and Hα line emission

2. NGC 4713 Results

By comparing the flux ratios between tile 11 II recombination lines Br- γ and H α we may estimate the intervening dust extinction. In Figure 1 we s n o w—the B r- γ line emission image (on the left) and the H α line emission image (on the right). The individual II Hregions are clearly detected in 110. Most of the H α clumps also have B r- γ features with at least >2 σ detections (in a 5" aperture). The Br- γ to H α flux ratios for the 15-20 clumps indicate visual extinctions of $A_{\rm V}$ = ()–3. This result is consistent with NGC 4713's "face-on" spiral-disk inclination, as well as its relative deficiency in gas and flust (log $L_{\rm ir}/L_{\rm B}\sim$ -0.1).

3. Sum mary

We have observed the Br- γ hydrogen recombination line in a sample of four galaxies using PFIRCAM and the Hale 5-mPF telescope. In three of the galaxies, irregular NGC 2537, edge-onspiral NGC 3683 and face-onspiral NGC 4713, we detect Br- γ emission at the >2 σ level. Our Br- γ and Ha detections resolve individual H Hregion complexes. The Br- γ to Ha flux ratios are consistent with extinctions <3 A_V in NGC 4713, and from 47 A_V in NGC 3683. Our preliminary results snow that narrow-b and Br- γ imaging is quite feasible with the latest generation of near-ir arrays, and is a particularly powerful method of inferring visual extinction (to correct the Ha flux) toward starburst 01 dusty galaxies ($A_V > 5$).